Pycosmicstar
Python Cosmic Star Formation Rate
Theory
The
Implemented Cosmological Background
The standard cosmological model, Cold Dark Matter plus Cosmolocical
Constan ($\Lambda$CDM), consider that the energetic content of
the Universe is dominated by dark energy followed by dark matter and
ordinary matter (baryonic). Those components would be in a homogeneous
Friedmann-Roberston-Walker metric and that the Universe expansion is
determined by the scale factor $a$. The methods associated to this
cosmology were implemented in the class lcdmcosmology. This class has the
following input attributes:
- omegam: ($\Omega_{m}$,
default 0.24) - The dark matter parameter;
- omegab : ($\Omega_{b}$,
default 0.04) - The baryonic parameter;
- omegal:
($\Omega_{\Lambda}$, default 0.73) - The dark energy parameter;
- h: (default, 0.7) - The h
of the Hubble constant ($H_{0} = 100h$ ).
Its public methods are:
- dt_dz(z) - time,
$t$, and redshift, $z$, relation:
\begin{equation}
\frac{dt}{dz} = \frac{9.78 h^{-1}Gyr}{(1+z)\sqrt{\Omega_{\Lambda} +
\Omega_{m}(1 + z)^{3}}};
\end{equation}
- H(z) - Hubble parameter
as a function of $z$:
\begin{equation}
H(z) = 100 h \sqrt{\Omega_{\Lambda} + \Omega_{m}(1 + z)^{3}};
\end{equation}
- dr_dz(z) - Comove
distance variation for flat Universe:
\begin{equation}
\frac{dr_{z}(z)}{dz} = \frac{c}{H_{0}}
\frac{1}{\sqrt{(1+z)^{2}(1+\Omega_{m}z)- z(2+z)\Omega_{\Lambda}}},
\end{equation}
where $c$ is the
speed of light.
- dV_dz(z) - Comove volume
variation:
\begin{equation}
\frac{dV}{dz}(z) = 4 \pi r_{z}^{2}(z)\left(\frac{dr_{z}(z)}{dz}\right);
\end{equation}
- growthFunction(z) -
Growth Function of cosmological density perturbations - for the
Universe with matter and a cosmological constant, the growth function
is well approximated by:
\begin{equation}\label{eq:growth}
D(a)\approx \frac{5 \Omega_{\rm m}(a)\ a}{2[1-
\Omega_{\Lambda}(a)+\Omega_{\rm m}^{4/7}+\frac{1}{2}\Omega_{\rm
m}(a)]},
\end{equation}
$a = 1 / (1 + z)$
is the scale factor;
- dgrowth_dt(z) -
derivative of the growth function with respect to time.
- dsigma2_dk(k) -
derivative of the variance of linear density field, $\sigma$ :
\begin{equation}
\frac{d \sigma}{dk} = \frac{1}{2\pi^{2}} k^{2}P(k)W^{2}(k,M),
\end{equation}
where $P(k)$ is
the power spectrum smoothed with a spherical top-hat filter function of
radius $R$, which on average encloses a mass $M$ $(R=[3M/4\pi\rho_{\rm
B}(z)]^{1/3})$, namely:
\begin{equation}
P(k) = BkT(k),
\end{equation}
where the
normalization factor $B$ is determined observationally.
For the transfer
function, we consider :
\begin{equation}
T(k) = \frac{1}{\{1+[ak+(bk)^{3/2}+(ck)^{2}]^{\nu}\}^{2/\nu}},
\end{equation}
with $\nu = 1.13$,
$a = (6.4 /\Gamma) h^{-1}\rm{Mpc}$, $b= (3.0/ \Gamma)h^{-1}\rm{Mpc}$,
$c = (1.7 /\Gamma) h^{-1}\rm{Mpc}$, and $\Gamma = \Omega_{\rm m}
h\,\,{\rm e}^{-\Omega_{\rm b}(1+\sqrt{2h}/\Omega_{\rm m})}$ is the
so-called shape parameter of the power spectrum.
The top-hat filter
is:
\begin{equation}
W(k,M) = \frac{3}{(kR)^{3}}[\sin(kR)-k R\cos(kR)];
\end{equation}
- sigma(kmass) - variance
of linear density field (\textbf{kmass} is the mass scale):
\begin{equation}\label{eq:sigma}
\sigma^{2}(M) = \int_{0}^{\infty}{\frac{d \sigma}{dk}dk};
\end{equation}
- rodm(z) - dark matter
density:
\begin{equation}
\rho_{DM}(z) = \frac{\rho_{DM}^{0}}{a^{3}},
\end{equation}
where
$\rho_{DM}^{0}$ is the present day dark matter density.
- robr(z) - baryonic
matterdensity:
\begin{equation}
\rho_{b}(z) = \frac{\rho_{b}^{0}}{a^{3}},
\end{equation}
$\rho_{b}^{0}$ is
the present day baryonic matter density.
The like Press-Schechter
Formalism
The core of the like Press-Schechter Formalism (PSF) is in define
haloes as concentrations of mass that have already left the linear
regime by crossing the threshold $\delta_{c}$ for non-linear collapse .
In this case, knowing variance of linear density field and how the
cosmological density perturbations grow it is possible to have the halo
mass function. The functional form to describe the halo abundance is:
\begin{equation}
\frac{dn}{dM} = f(\sigma, z)\frac{\rho_{DM}}{M^{2}}\frac{d
\ln(\sigma)}{d\ln(M)},
\end{equation}
being $f(\sigma, z)$ the $\sigma$-weighted distribution
function. In the literature is possible to find different forms of
$f(\sigma, z)$. In the class structures
we have implemented the following distribution (we define $\nu \equiv
\sigma(M) D(z)/\delta_{c}$):
- Press & Schechter (1974) :
\begin{equation}
f(\sigma, z) = \sqrt{\frac{2}{\pi}} \nu \exp{\left(-
\frac{\nu^{2}}{2}\right)};
\end{equation}
\begin{equation}
f(\sigma, z) = A \sqrt{\frac{2a}{\pi}} \left[1 +
\left(\frac{\nu^{2}}{a}\right)^{p} \right]\exp{\left(-
\frac{a\nu^{2}}{2}\right)},
\end{equation}
where $A =
0.3222$, $a= 0.707$ and $p=0.3$;
\begin{equation}
f(\sigma) = 0.315 \exp{\left( -|ln(\sigma^{-1}) + 0.61|^{3.8}\right)}
\end{equation}
\begin{equation}
f(\sigma, z) = A \left[\left(\frac{b}{\sigma}\right)^{a} +
1\right]\exp(-\frac{c}{\sigma^{2}}),
\end{equation}
being:
\begin{equation}
A = 0.186(1+z)^{-0.14},
\end{equation}
\begin{equation}
a = 1.47(1+z)^{0.06},
\end{equation}
\begin{equation}
b = 2.57(1+z)^{\alpha},
\end{equation}
\begin{equation}
c = 1.19,
\end{equation}
\begin{equation}
\alpha =
\exp{\left[-\left(\frac{0.75}{\log_{10}(\Delta_{h}/75)}\right)^{1.2}\right]}
\end{equation}
and $\Delta_{h}$ is
a parameter that represent the overdensity within a sphere of radius
$R$ with respect to the mean density of the Universe. This parameter is
considered as an input parameter of the structures class,
called delta_halo.
\begin{equation}
f(\sigma) = 0.7234(\sigma^{1.625} + 0.2538)\exp(-1.1982
\sigma^{2})
\end{equation}
The choice of the mass function to be used is passed as an string
attribute, massFunctionType,
and its possible values are:
The public methods of structures
are:
- massFunction(lm, z)
- Return the dark haloes mass function, lm is the $\log_{10}$ of
the mass of the dark halo;
- fbstruc(z) - Return the
faction of barions into structures. Pereira & Miranda (2010)
consider that the baryon distribution traces the dark matter
distribution without bias, also that stars can form only in structures
with mass larger than a threshold $M_{min}$.Thus, the fraction of
baryons at redshift $z$ that are in structures is given
by:\begin{equation}\label{eq:fbary}f_{\rm
b}(z)=\frac{\int_{M_{\rm min}}^{M_{\rm max}} {\frac{dn(\sigma,z)}{dM}
MdM}}{\int_{0}^{\infty} {\frac{dn(\sigma,z)}{dM} MdM}};\end{equation}
- halos_n(z) - return the
integral of the mass function of dark halos multiplied by mass in the
range of $\log(M_{min})$ a $\log(M_{max})$;
- numerical_density_halos(z)
- Return the numerial density of dark halos within the comove volume;
- abt(z) - return the
accretion rate which accounts for the increase in the fraction of
baryons in structures. From the definition of $f_{\rm b}(z)$ this
accretion is given by \citep{pereira10,d1}:\begin{equation}a_{\rm b}(t)
= \Omega_{\rm b}\rho_{\rm
c}\left(\frac{dt}{dz}\right)^{-1}\left|\frac{df_{\rm
b}(z)}{dz}\right|,\label{abaryon}\end{equation}
where $\rho_{\rm
c}=3H_{0}^{2}/8\pi G$ is the critical density of the Universe.
The
Cosmic Star Formation Rate
In the class
cosmicstarformation,
that extends the class
structures,
were implemented the methods:
- cosmicStarFormationRate(z)
- returns the cosmic star formation rate, $\dot{\rho}_{*}(z)$, in
M$_{\odot}$yr$^{-1}$Mpc$^{-3}$;
- gasDensityInStructures(z)
- returns the density of gas in structures, $\rho_{g}(z)$, in
M$_{\odot}$Mpc$^{-3}$;
- phi(m) - returns the
Initial Mass Function (IMF), $\Phi(m)$, which gives the distribution of
the stellar mass. Here was assumed the IMF, namely:
\begin{equation}
\Phi(m) = A m^{-(1+x)},
\end{equation}
where $A$ is a normalization factor and $x$ is an input attribute
called eimf (default value eimf=1.35). The constant $A$ is
determined by:
\begin{equation}
\int_{m_{\rm inf}}^{m_{\rm sup}}Am^{-(1+x)}mdm = 1,
\label{norimf}
\end{equation}
and it was considered $m_{\rm inf}=0.1{\rm M}_{\odot}$ and $m_{\rm
sup}=140{\rm M}_{\odot}$ as limits of the last equation.
Generally speaking, the cosmic star formation rate (CSFR) is obtained
by the solution of the equation governing the total gas density
in the haloes:
\begin{equation}
\dot\rho_{\rm g}=-\frac{d^{2}M_{\star}}{dVdt}+\frac{d^{2}M_{\rm
ej}}{dVdt}+a_{\rm b}(t)\label{rhogas},
\end{equation}
where $a_{b}(t)$ is infall rate of barions into structures. The CSFR
is:
\begin{equation}
\frac{d^{2}M_{\star}}{dVdt} \equiv \dot{\rho}_{*}(t) =
\frac{\rho_{g}(t)}{\tau},
\end{equation}
being $\tau$ a parameter that represents the time-scale for star
formation. In the code, $\tau$ is an input attribute,
tau, in units of Gyr.
The term $d^{2}M_{\rm ej}/dVdt$ takes into account the mass ejected
from star that returned to the interstellar medium of the system, being:
\begin{equation}
\frac{d^{2} M_{\rm ej}}{dVdt} = \int_{m(t)}^{\rm M_{sup}}{(m-m_{\rm
r})\Phi(m)\dot{\rho}_{*}(t-\tau_{m})dm},\label{mej1}
\end{equation}
where $m(t)$ corresponds to the stellar mass whose lifetime is equal to
$t$, $m_{r}$ is the mass of the remnant, which depends on the
progenitor mass, and the star formation rate is taken at the retarded
time $(t-\tau_{m})$, where $\tau_{m}$ is the lifetime of a star of mass
$m$. Here it was considered $\tau_{m}$, in yrs, given by
the metallicity-independent fit of:
\begin{equation}
\log_{10}(\tau_{\rm m})=10.0-3.6\,\log_{10}\left(\frac{M}{\rm
M_{\odot}}\right) +\left[ \log_{10}
\left( \frac{M}{\rm M_{\odot}}\right) \right]^{2},
\end{equation}
The mass of remnant as a function of the progenitor mass are:
- Objects with mass lower than 1$M_{\odot}$ have high lifetime, not
contribute for M$_{\rm ej}$;
- [1$M_{\odot}$ , 8$M_{\odot}$] - Carbon-oxygen- white dwarf -
$m_{r} = 0.1156m +0.4551$ $M_{\odot}$
- (8$M_{\odot}$,10$M_{\odot}$] - oxygen-neon-magnesium white dwarfs
- $m_{r} = 1.35$$M_{\odot}$
- (10$M_{\odot}$, 25$M_{\odot}$) - neutron stars -
$m_{r}=1.4$$M_{\odot}$
- [25$M_{\odot}$,140$M_{\odot}$] - Black Hole - $m_{r} =
\frac{13}{24}(m-20{\rm M}_{\odot})$
In hierarchical models for galaxy formation the first star-forming
halos are predicted to collapse at redshift $z\gtrsim 20$, having
masses $\sim 10^{6}{\rm M}_{\odot}$. These facts are parameterized in
the code by choice of the redshift that start the star formation,
zmax, and by changes in the value of
lower limit of the superior integral of the Equation of fraction of
barions into structures
lmin.
The input attributes of the class
cosmicstarformation
are:
- tau (default 2.5 ):
time scale, in Gyr, of the CSFR.
- eimf (default 1.35):
exponent of the Initial Mass Function.
- nsch (default 1): the
normalization factor in the CSFR model.
- lmin (default 6.0): log10
of the minal mass of the dark halo where it is possible to have star
formation.
- zmax (default
20.0): redshift that start the star formation.
- omegam (default 0.24):
The dark matter parameter.
- omegab (default 0.04):
The baryonic matter parameter.
- omegal (default 0.73):
The dark energy parameter.
- h (default 0.7):
The h of the Hubble constant ($H_{0} = 100h$).
- massFunctionType (default
"ST"): The type of mass function of dark matter halos used.
Bibliography:
Carrol S.M., Press W.H., Turner E.L, 1992, ARA&A, 30, 499
Efstathiou G., Bond J.R., White S.D.M., 1992, MNRAS, 258, 1p
Fardal M.A., Katz N., Weinberg D.H., Dav ́e R. 2007, MNRAS, 379, 958
Hopkins P.F. 2004, ApJ, 615, 209
Hopkins P.F. 2007, ApJ, 654, 1175
Hopkins A.M., Beacom J.F. 2006, ApJ, 651, 142
Jenkins A., Frenk C.S., White S.D.M., Colberg J.M., Cole S., Evrard A. E.,
Couchman H., Yoshida N., 2001, MNRAS, 321, 372
Kauffmann, G., et al. 2003, MNRAS, 346, 1055
Mahamood, A., Devriendt, J.E.G., Silk, J. 2005, MNRAS, 359, 1363
Merloni, A., Rudnick, G., Di Matteo, T. 2004, MNRAS, 354, L37
Peacock J.A., 1999, Cosmological Physics, Cambridge University Press, Cam-
brige, 682
Pereira, E. S., Miranda, O.D., 2011, MNRAS, 418,L30
Pereira E.S., Miranda O.D. 2010, MNRAS, 401, 1924
Press W.H., Schechter P., 1974, Apj, 193, 425
Salpeter E.E., 1955, Apj, 121, 161
Salvadori S., Schneider R., Ferrara A., 2007, MNRAS, 381, 647
Scalo J., Fund. Cosm. Phys., 1986, 11, 1
Sheth R.K., Tormen G., 1999, MNRAS, 308, 119
Springel V., Hernquist L. 2003, MNRAS, 339, 312
Tinker, J. L., et al. 2010, ApJ, 724, 2, 878
Warren M. S., et al. 2006, ApJ, 646, 2, 881