1
2
3 __author__ = "Eduardo dos Santos Pereira"
4 __email__ = "pereira.somoza@gmail.com"
5 __credits__ = ["Eduardo dos Santos Pereira"]
6 __license__ = "GPLV3"
7 __version__ = "1.0.1"
8 __maintainer__ = "Eduardo dos Santos Pereira"
9 __status__ = "Stable"
10
11 """
12 DISCLAIMER:
13
14 A FORTRAN wrapper library for cosmology analisys in Python
15
16 cosmolib is free software: you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation, either version 3 of the License.
19 cosmolib is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with Foobar. If not, see <http://www.gnu.org/licenses/>.
26
27
28 AUTHOR:
29
30 Eduardo S. Pereira
31 email: pereira.somoza@gmail.com
32
33
34 Initialization:
35
36 import cosmolib
37 omegab = 0.04
38 omegam = 0.24
39 omegal = 0.7
40 h = 0.7
41 myUniverse = cosmolib.init(omegab,omegam,omegal,h)
42
43 FUNCTIONS:
44 dtdz(z) : Time and Redshift Relation for S{Lambda}CDM Universe
45 dtdzCG : Time and Redshift Relation for Chaplygin Gas
46 rz(z): comove distancy for S{Lambda}CDM Universe
47 rzGC(z) : comove distancy for Chaplygin Gas
48 dr_dz(z) : variation of comove distance with redshift for
49 S{Lambda}CDM Universe
50 drGC_dz(z) : variation of comove distance with redshift for Chaplygin Gas
51 dV_dz(z) : variation of comove volume with redshift for S{Lambda}CDM
52 Universe
53 age(z): Age of the Universe for S{Lambda}CDM Universe
54 ageCG(z) : Age of the Universe for Chaplygin Gas
55
56 sigma: the variance of the linear density field.
57 dsigma2_dk: Derivative of the variance of the linear density field
58 with respect to the scala factor
59 grow: Growth function.
60
61 rhodm : Evolution of the dark matter density
62 rhobr : Evolution of the barionic matter density.
63
64 NUMERICAL METHODS:
65 rk4_in:
66 4th-order Runge-Kutta method for solving the
67 initial value problem { y}' = { F(x,{ y} )} , where
68 { y} = { y[0],y[1],...y[n-1]} .
69 ARGUMENTS:
70 y: nitial conditions.
71 Xarray : Array with the x value for all range
72 Yarray: Output Array with the solutions of Y'
73 fun: user-supplied function that returns the
74 array F(x,y) = { y'[0],y'[1],...,y'[n-1]} .
75 RETURN:
76 The integrated numerical function
77 romberg:
78 Romberg Integration
79 ARGUMENTS:
80 func : Function to be integrated
81 a : start point
82 b : end point
83 tol : tolerance
84 RETURN:
85 The integrated value
86
87 locate:
88 Localiza a posicao de dado ponto a partir de dois adjacentes.
89 ARGUMENTS:
90 func --- function or entry table
91 xx --- entry table
92 n --- n point in the table
93 x --- value in x that is related to y
94 RETURN
95 j --- x,y position
96
97 dfridr:
98 Gives the derivate of func with respect to x
99 Arguments:
100 func - Function to be derived
101 x - point in x where the derivative is analysed
102 h - step for diferential
103 error - internal parameter for function error
104 RETURN:
105 The derived value of the funtion in the x point
106
107
108 """
109
110 __all__ = ['lcdmlib', 'chaplyginlib', 'numericallib']
111